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The

RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space
Center and local industry to actively support research in the computing and
information .sciences. As part of this endeavor, UH'Clear Lake pro_ a_

partnership with JSC to jointly define and manage an integrated program of research

in advanced data processing technology needed for JSC's main missions, including

administrative, engineering and science responsibilities. JSC agreedandentered into _ .

a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to "

jointly plan and execute such research through RICIS. Additionally, under

Cooperative Agreement NCC 9-16, computing and educational facilities are shared

by the two institutions to conduct the research.

The mission of RICIS is to conduct, coordinate and disseminate research on
computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear

Lake, the mission is being implemented through interdisciplinary involvement of
..... facui_y_and _iuae-n-ts_Tromeach of therb_s_h-&3is! B_, EdUcati:on, Fhiman

Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concept. UH-Clear
?

Lake establishes relationships with other universities and research organizations, : _=
having common research interests, to provide additional sources of expertise to tai
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and

research objectives to advance knowledge in the computing and information _

sciences. Working jointly with NASA/JSC, RICIS advises on research needs, _al
recommends principals for conducting the research, provides technical and

administrative support to coordinate the research, and integrates technical results

into the cooperative goa!s of UH:clear Lake and NASA/JSC.
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Analysis of Exhaustive Limited Service for

Token Ring Networks

=

JEFFERY H. PEDEN

University of Virginia, Charlottesville, Virginia

Abstract. Token ring operation is well-understood in the cases of exhaustive, gated, gated
limited, and ordinary cyclic service. There is no current data, however, on queueing models for

the exhaustive limited service type. This service type differs from the others in that there is a

preset maximum (co) on the number of packets which may be transmitted per token reception, and
packets which arrive after token reception may still be transmitted if the preset packet limit has
not been reached. Exhaustive limited service is important since it closely approximates a timed

token service discipline (the approximation becomes exact if packet lengths are constant).

In this paper we present a method for deriving the z-transforms of the distributions of the

number of packets present at both token departure and token arrival for a system using exhaustive
limited service. This will then allow us to derive a formula for mean queueing delay and queue

lengths. The method used is theoretically applicable to any co, but due to computational com-

plexity, it becomes impractical for large values of co. Fortunately, as the value of co becomes
large (typically values on the order of co = 8 are considered large), the exhaustive limited service

discipline closely approximates an exhaustive service discipline.

Categories and Subject Descriptors: D.4.8 [Performance]: Queueing theory; C.2.5: Networks,
local.

General Terms: Performance, Theory.

Additional Key Words and Phrases: Queueing theory, network performance measurement, net-

work design, network protocol analysis.

1. Introduction

The general operation of a token ring follows. A circulating token arrives at the various

ring stations in either logical or physical order, depending on whether the ring is a logical ring

implemented on a bus (e.g., IEEE 802.4 Token Bus), or is an actual physical ring (e.g., IEEE

w
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802.5 Token Ring, FDDI Token Ring). If a station has packets enqueued, the reception of the

token allows some or all of these packets to be transmitted. The token is then released so that it

can visit the next station. If there are no packets enqueued at a station at token reception, the

token is immediately sent to the next station.

The number of packets that may be transmitted at token reception is controlled by the ser-

vice discipline. There are six possible service disciplines: (1) ordinary cyclic service, (2) exhaus-

tive, (3) gated, (4) timed token, (5) gated limited (GL) service, and (6) exhaustive limited (EL)

service. Ordinary cyclic service allows only one packet to be transmitted when the token is

received. Exhaustive service allows packets to be transmitted until the station's queue is com-

pletely empty, that is, there is no upper limit to the amount of time a station may use the token.

Gated service allows only those packets present at token arrival to be transmitted. GL service is

identical to gated service with the exception that an upper limit is placed on the number of pack-

ets that may be transmitted, that is, the token serves the minimum of the number of packets

present at token arrival, or the maximum number set by the limit (an excellent treatment of gated

limited service can be found in [2]). Timed token service places a limit on the amount of tS_te a

station may hold the token before releasing it, with the provision that at least one packet may

always be transmitted. The last service type, EL service, allows up to _ packets to be served,

regardless of whether or not they were present at token arrival. It also includes the provision that

the token departs the station as soon as the station's queue is empty, even if this event occurs

before the o.)packet limit has been reached.

The EL service discipline has obvious application in the analysis of token rings which use

token holding timers (timed token service discipline), in that the co packet limit may be used to

approximate the maximum number of packets which may be transmitted during a service session.

The limited gated discipline may also be used, although it is less accurate. Among token rings

which use EL service are the IEEE 802.4 Token Bus [3], the IEEE 802.5 Token Ring [4], and the

F'DDI Token Ring [1]. Note that if single packet per token service is used, EL, GL, and ordinary
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cyclic service become identical.

In this paper we will develop the z-transform of the density function giving the number of

packets present at token departure, using the embedded Markov chain approach. Since the

transform is dependent upon the state probabilities of our Markov chain, we show how these pro-

babilities may be obtained. We then present an example solution along with numerical results.

2. Assumptions

Our analysis is based on several assumptions, the first of which is that the stations on the

ring are indistinguishable. That is, arrival processes are the same at each station, along with

mean packet service time, station load, station latency, etc. We also assume that arrivals at each

station follow a Markov process, and that all packets are offered at the same priority level, result-

ing in an M/G/I model.

We assume pseudo-independence of successive token cycles, rather than complete indepen-

dence. The complete independence of token cycles is an assumption frequently made for

mathematical tractability, which states that a transmission has no effect on the length of the fol-

lowing token cycle. Our assumption of pseudo-independence assumes the departure from an

equilibrium state on a single successive token cycle, and then a return to equilibrium. We show

that valid results are derived using this assumption. The reasons for this are that (1) the depen-

dence of any token cycle on the previous one is very small, and (2) the fact that we are using

unconditional distributions based on the mean value of the token cycle time (which is unaffected

by the number of packets per token allowed -- see Section 7) allows us to derive the uncondi-

tional probabilities we use in our analysis.

3. Preliminaries

Several terms and functions are used in our analysis. Following the standard definitions, the

z-transform G (z) of a function G (t) is

.-31



G(z) zE[z x] = _gkz k
k-O

where gk mP[X=k], and E[X] is the mean or expected value of the random variable X.

(1)

Simi-

larly, the Laplace.Stieltjes transform (or LST) of a function is

I

W

F*(s) = E [e -a] = j"e-=dF(x) (2) ._

The expectation operator E [X ] for some random variable X is

E[X]- _kP[X=k] (3)
k=O

for the discrete case. For the continuous case, it is

E [x]= "_xdF(x) (4)

We use the following notation for conditional expectation:

P [x_y ]
P[x lyl nP[x given thaty has occurred]

Ply]

4. Fundamental Relationship

(5)

This analysis is for EL service, where the number of packets per token may be any finite

integer greater than or equal to one; the analysis implicitly includes a derivation for ordinary

cyclicservice.

The fundamental equation of our system is

Rn+l = Rn + A,i - f'l,i (6)
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where

R,_ m the number of packets present at the nsh token departure

An t the number of packets which arrive between the n th and n+l st [oken departures

_n m the number of packets transmitted between the n th and n+l a token departures
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This is a time-dependent process. In order to remove the time dependency, we let n -=-)o_, and

take the expectation. This results in

E[R] =E[R] +E[A] - E[fl] (7)

From this equation, we see that queue length at token departure is a natural point at which to

embed a semi-Markov process.

V

v

m

5. Probability Distribution of Packet Arrivals

In order to define the probability distribution of packet arrivals, we first need certain terms.

An arrival slot is defined as being either the token vacation or the duration of a packet transmis-

sion; there are at most co + I arrival slots in a token cycle, there is a minimum of one. The quan-

tity2Pis defined as a vector of length O + 1. The elements of'-_are numbered from 0 to co. The jth

element of-_is an integer representing the number of arrivals during arrival slot j, The 0 *h ele-

ment represents the number of arrivals during the token vacation; successive elements represent

arrivals during packet transmissions.

The inclusion function i_ fl, A, R) is defined as

I(-_,,_,A,R)=I, R+A>_

L

lf'_,fl, A, R)=O, otherwise (8)

where fl is the slot number of"_, A is the number of packets which have arrived previous to slot fl

given the current value of-_,, and R is the state of the queue at the previous token departure. The

purpose of this function is to control the inclusion of certain terms in the calculation of arrival

probabilities.

THEOREM 1. The probability _i nj of i packet arrivals occurring between the current token

departure and the next token departure given state j at the current token departure is given by

B

Y

5



[*,...,Ol
• T. er:o=- 

_[o,...,kl :_o
(9)

with "_running through all canonical forms of all lengths of-_from len (-_ = 1 to len _ = co + I,

beginning with-_= [0 ..... k ] and ending with-_= [k ..... O] such that the integer elements of'--_sum

to k.

PROOF. The calculation of =j ai is complicated by the fact that the arrivals are constrained

to arrive early enough to make a contribution to service time. For example, it is evident that for

any packets to be left behind at token departure, co packets must have been transmitted (if less

than (o packets were transmitted, the station was empty of packets at token departure). However,

if only a single packet was present at the previous token departure, and the number left behind at

the current token departure is greater, then at least co + 1 packets must have arrived during a total

of ta packet service times plus the token vacation time. But if all co arrived during the ta'h service

time, there would only have been a single service time (a contradiction), since only the single

packet present would have been served with the token then departing. Therefore, some of the

packets had to have arrived prior to the coo' service time for there to have been t_ packets

transmitted. All possible arrival forms are generated, whether or not they are admissible; the

function I (-:,,fl, Au, R) excludes inadmissible forms. An example of possible arrival forms for

co - 2 is given in Figure I.
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arrival count]

packets present (token vacation- 1

arrival counts

(service times)

L_

L+ t

: S

1 1 _ 0

l

1 1 _J 1

-I
0

l

0

0 J 2 0

-]

FIG. I. Possible arrival patterns for two packet arrivals.
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To complete the proof, we must show that

i Tti_j = I (I0)
i=O

If we represent the conditional state probabilities as Poo, Pl O, P2U ..... then we may propose the
=_

following lemma:

LEMMAI.

PoIj"_OIj +RI)j + "' " +Rte.-jlj

P I Ij ---- gt_--j+! Ij

P2lj = _a._-j +21 j

_7m

(II)



etc.

PROOF, Ifj packets are present at a station, then co - j packet may still arrive and be served,

thus leaving the station empty of packets at token departure. If i packets are to be present at

token departure given j present at the previous token departure, then since up to o- j packets

may arrive for no packets to be present at token departure, co- j + i packets must arrive for i

packets to remain. []

We know that that _. Pi _j = I.
imo

From the above lemma we have _, Pi ij - _ rci )j. Thus
i,_O i_O

COROLLARY 1. The number of permissible arrival forms is always less than or equal to

Io) + i I for i arriving packets.

PROOF. Since arrivals are indistinguishable, the total number of arrival forms ts given by

the Bose-Einstein statistic. Due to the fact that some arrival forms do not meet the criteria given

in Theorem 1 for timeliness of arrival, this statistic represents a maximum. []

Corollary 1 is an important measure since it shows the complexity of the aigorithPtl used tO

compul¢ arrival probabilities.

6,

The method we use to derive the z-transform is to derive the conditional transforms_which _

will thus allow us to express the unconditional trarisform in terms of unconditional state probabil-

ities. We will show that the number of unconditional state probabilities needed is equal to co, and

then indicate a method for finding them.

THEOREM 2.

G (z Ie=cz+5) = z s V'(X,. Z.z l e) [B'(Z, - _.z)] _

mSm

(12)
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where V" (s) and B "(s) are the LST"s of the token vacation time and packet service time distribu-

tions, respectively.

PROOF. Any state e < 8 is unreachable since only co packets may be transmitted. Since

there are at least co + 6 packets present at token arrival, exactly co packets will be transmitted.

Therefore, the z-transform is defined by the expression

G(z le=a)+5)= _, xkz _+'s
k=,0

=z8 _ xk zk (13)
k=O

--4 where )xt is the probability of k packet arrivals during the token vacation time plus co service

times. We may now apply the well-known result from queueing theory that a system with Pois-

son arrivals which only experiences unit changes in state has the following relationship between

its z-transform and the LST of its packet service time distribution:

H(z) = u'(a, - a.z) (14)

Defining the LST of the token vacation time distribution to be V'(s), and the LST of the packet

service time distribution to be B" (s), we have

G (z I (_=co+ 5) = z 8 V°(k - kz) [B'(k - _.z)] _ (15)

O

For any state 0 < e < co, the construction of the z-transform is accomplished by realizing

that the number of packets left behind in the queue at token departure is the number left behind at

the previous token departure, plus the number which arrive to be served, minus the number actu-

ally served. Defining G (zig) to be the z-transform of the state transition probabilities, and

H(z I¢) to be the z-transform of the packet arrival probabilities, the relationship between g(z le)

and H(z I_) is given by the following theorem.

_9_



THEOREM 3.

G(z I_)= H(z l£)zz

l_ _k zk_+ - Y'. _* z=
*=0 k=O

PROOF. The z-transform for the number left behind at the previous token departure is

merely ze. Therefore, since addition and subtraction in the distribution domain corresponds to

multiplication and division respectively in the transform domain, the numerator of G (z le) is

equal to H(z le)z _. The transform of the number delivered is given by the denominator of

G (z I¢). If no packets are left behind, i.e., e = O, then the number delivered is equal to the lesser

of the number which arrive and co. If a single packet is left behind, the number delivered is at

least one, plus those that arrive, or to, whichever is less, and so on. Using mathematical notation,

this quantity is identical to the denominator of G (z l e). Since these packets are subtracted from

those which are already present plus those which arrive, this transform is in the denominator of

G(z le). E1

THEOREM 4. For any state 0 _;_ < to, the conditional z-transform for that state is given by

G (z l e) = V'(_.- _.z) [a'(Z. - Xz)] =

- r o,t[B'(k - lz)] =-¢ + r,olt

- _zl= z [B'(_.- _.z)] ='¢-1 + xzte z

- x2,, z 2 [B'(Z- Z.z)] ¢°-¢-= + _tlt z z

- _o,-¢-trt za"C-IB*(l- lz) + =o,-¢-Ifzz_"¢-I

PROOF. G(Z)i s always less than or equal to V'(Z-_.z)[B'(_.- kz)] =. The forms which

must be omitted consist of those arrival formats such that the number of arrivals is less than

- e. These, however, are given by r,.ol¢[B*(_. - _.z)] t_'t + _,t, rq ,¢[B*(X - k z)l ">-¢'1 + gt ,E,

li

i
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through gee-c-! ,tB "(_. - Iz) + _¢,-c-I ,t. These forms serve to eliminate the first 03 - e - 1 terms

from the z-transform. However, these terms are replaced by

_It +_t_ z + • • • + _o>-_-1,t z°-c-t, which are the correct o-e- I first terms of the transform.

[]

Once all the conditional transforms have been obtained, the final unconditional transform

G (z) for any 03 is given by

w

G(z) = _ ?_G(z le) (18)
¢=0

THEOREM 5. The final unconditional z-transform is dependent upon 03 unconditional state

probabilities P o, P1 ..... P _-I .

PROOF. From Theorem 2, we have

G(z)= I_ P_G(z 18)+ _ Pc :-" V*(_'-_'z)[B°( _'- _'z)l" (19)

We recognize that

_, P t z_"coV" (_.- _.z) [B" (_.- _,z)] m

v

!

V

_o--I

V'(_.- Iz) [B"(_.- _.z)]¢°(O(z) - _ e_ z_)
t=O

Z _

(20)

G (z) ultimately resolves to

¢_--I _o--I

V'(_.-kz)[B'(_.-).z)] °' _ etz t -z °) _, PtG(z le)
t=O _=0

G(z) = V*('A- _) [B "(),.-),.z)] m - z m

(21)

Thus G (z) is dependent only on Po, P _..... Po).q. []

The state probabilities Po, Pt ..... Pm-t are obtained using the method in [2]. The uncon-

ditional transform has a degree co polynomial in z in the denominator, and a degree co - 1 polyno-

L



mial in the numerator. Since the transform is certainly analytic on and inside the unit disk,

Rouche's Theorem guarantees that the numerator and denominator will have co -1 identical roots

inside the unit disk (from inspection, the toth root is 1). The denominator polynomial, which

involves only z, is used to obtain to- 1 of the zeros of the numerator polynomial, resulting in

to-1 equations in to unknowns. The necessary tom equation is obtained using the fact that

G (z) J z,,t -- 1. These zeros are now used in the numerator to solve for Po, P l ..... P_-I.

Using G(z) we can now obtain the moments E[R] and E[R 2] of queue length at token

depamu'e via differentiation of G (z):

(z) ] (22)d
E[R]= dz G J_=t

d2 G(z) l + aIR]E[R2]= dz2 ._=t
(23)

The z-transform derived above is not directly invertible, thus making it impossible to derive

probability ......a closed-form expression for the : distribution function. However, it is possible to

numerically invert the z-transform to any degree desired, that is, it is theoretically possible to

compute any state probability; however, the computation of P, increases quickly in difficulty as k

grows large. Fortunately, the state probabilities quickly become numerically insignificant as k

grows large.

THEOREM 6. Given unconditional state probabilities P o, P ! ..... Pk-t ,

k-I

P_-_ - _, P_-_li Pi ..........
i=0 (24)

Pk =
Pk--olk

PROOF. State ( = k - to can Ix: reached only from states P0, P l ..... P,. The_fore

U

u

g

J

W

W

E

w

m_
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m

J

g
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i
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k-!

Pk--w = _ P*-_!i Pi + Pk--wI, P* (25)
i=0 wm

with the only unknown being P,. Solving for P,, we have

W



Pk --

k-!

P*-_ - _ P* -o_li Pi
i-o (26)

Pk--_lk

- z

L_

[]

COROLLARY 2. Given unconditional state probabilities P o, P I ..... P_-I, it is possible to

find any unconditional state probability.

PROOF. The proof is by induction on k, where the state probability to be found is P_k. It

is evident that we can find P_, given that we have Po, Pt ..... P_I, thus demonstrating vali-

dity for k = 1. Assuming the statement to be true for k -- n - (o - 1, we can easily find P,,, so the

corollary is valid for k = n - (o. Therefore, by induction, the corollary is valid for all k. I'1

m _

LI

7. Token Cycle Time

It has been proven elsewhere that the mean token cycle time is unaffected by the choice of

co [8]. It is necessary to qualify this, however, by stating that if the network load is outside the

region of stability for any (o (that is, a mean queue length exists), then the statement applies only

to a choice of co' such that the network load is within the region of stability for o)'. Given this,

we may now state:

THEOREM 7. Given nondeterministic network operation, the mean number of packets

present at token arrival is less than co if the mean exists.

PROOF. Given stability, the mean token cycle time is unaffected by the choice of o) (given

suitable constraints on the maximum load). It is easily, demonstrated that for any co, the denomi-

nator of the equation giving the mean number of packets present at token arrival Will containthe

factor

co - (_B *0)(3. - kz) + V* (I)(_. _ _.z)) (27)

which is multiplicative of all non-zero terms in the denominator. The term

13--
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coB" (1)(t- _.z) + V' _I)(X- _.z) (28)

represents the mean number of packets arriving at a fully utilized station during a full token

cycle. For the term in Equation (28) to remain positive, the number of arriving packets during a

token cycle must be stricdy less than co. Since the number of arriving packets must be less than

co, a mean queue length of greater than or equal to to cannot be maintained. Assuming the con-

trary, if a mean queue length of greater than to exists, then less than co packets arrive during each

token cycle, but co packets are served, resulting in more packets being served than are arriving.

This, however, implies that the queue length is constantly decreasing, which is inconsistent with

the assumption of a mean queue length. Thus the mean queue length at token arrival must be iess

than oa,

COROLLARY 3. Given nondeterministic network operation, the mean number of packets

present at token departure is less than co if the mean exists.

P_OOF. The number of packets p_nt at token _an'iv_ is equal to the sum of the number

present at token departure plus those which arrive during the token vacation. Therefore, the

number present at token departure must be less than or equal to the number present at token

arrival. 1"7

8. Token VacationTime SecondMoment and Variance

Using the detinition of the variance of a random variable, the variance Vat [Fv] of the token

vacation time is given by

Var [Iv]= (N- I)zVat [r,] (29)

Since the variance is a function of the first and second moments, we have

= g [((N- 1)r, + -t)a] ......

where Fu is the token hold time random variable. Equation (30) resolves to

(30)
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E[F_] =(N-1)[2yE[r.] + (N-1) E[I"2u] ] + y2

Because of Theorem 7, we may use the proof in [5] that

(31)

w

w

E [r. ] = Yp (32)
1 -Np

The only unknown is E[F_]. It is easily shown that

e [r_l = e [l 2] Var [U ] + E2[U l Var [all + E2 [ru ] (33)

where i is the random variable of the number of packets served, and U is the service time ran-

dom variable for a single packet.

To find E[12], we need P[fl=k I R] fork = 1, 2 ..... o_. Using _tiU as defined in Equation

(9), we have

LEMMA 2.

P[llR]=Itt,a._l R, l-R >0

P[IIR]=I, l-R<0 (34)

PROOF. If I packets are to be served (where l < ¢o), and R packets were left behind at the

previous token departure, then exactly l-R packets must arrive. However, the probability of

i - R packets arriving is _ )e. If R >_co, then exactly m packets will be served with probabil-

ityl. 12
....... = :

We may now remove the conditioning on the expectation, since the state probabilities are

known. Thus E[_] is given by

g[i 21= _, k 2P[i=k] (35)
ki0

To compute Vat Ill] we need E2[l], but this is equal to the square of the mean number of pack-

ets which arrive during a token cycle time, or I_,E[V]I 2. Thus

-- 15--



Var[_] = E[_2] - I_.E[I"] I 2

Thus, after substitution and algebra, we have

VariFy] = (N - 1)2 Var[Fu]

(36)

(37)

11

=_

J

M

COROLLARY 4. As Ella] --) co, Var[Fv] --->(N-1) 2 co2 Var[U], and furthermore, if packet

lengths are constant, as E[fl] ---) 0.), Var [F,] --.) O.

PROOF. The proof follows from substitution into Equation (37). []

= _

W

9. State of the System at Token Arrival

We now have a description of the system at token departure times. However, a description

of the system at token arrival is also of interest. Since we have the z-transform and state proba-

bilities of the system at token departure, it is possible to derive from this the z-transform of the

state of the system at token arrival instants.

Given that G (z) is the unconditional transform of the number of packets left at a station at

token departure, the unconditional transform of the number of packets present at token arrival

GA(z) is given by

COROLLARY 5.

OA(z) = O (z) V* kz) (38)

PROOF. The unconditional transform of the token vacation time is V'(_-7_z). The

number of packets present at token arrival cannot be less than the number present at token depar-

ture, since it is equal to the number left behind plus those which arrive during the token vacation,

and the number which arrive during a mean token vacation is certainly independent of the

number left behind. Since the addidon of independent random variables is equivalent to the mul-

tiplication of their transforms, we arrive at Equation (44). []
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The unconditional state probabilities at token arrival time may be found using Corollary 5.

Defining P', to be the unconditional probability of k packets present at token arrival, and

P [Av = k Ij ] to be the probability of k arrivals occurring during the token vacation time given

token departure state j, we have

w

v

U

-- I

k

P'_ -- _ P_ P lay - k-j I j ] (39)
j,o

PROOF. Since the number of packets present at token arrival must be greater than or equal

to the number present at token departure, we may state the following relationship:

P'o =PoPlAr =010]

P'l =PoP[Av = I IO]+ PI P[Av =OIl]

P'o =PoPlAr =210]+PI P[Av = 111] +P2P[A_ =012] (40)

etc. The general form of this relationship is given by Equation (39). []

10. Mean Waiting Time

For our purposes, we define the queueing delay of a packet to be the time between its arrival

to the queue and the time it begins to receive service, that is, its total time in the queue minus its

own service time. It has been proven in [6] that the mean waiting time of a packet E [W] is given

by

[r2l (41)
E[W] =E[O] + 2E[F,]

where E[Q] is queueing delay, and ElF 21 / 2E[F_] is the time spent waiting for the token to

arrive. The time spent waiting for the token can be found by simple substitution. It has been pro-

yen in [2] that queueing delay cannot be found using the PoUaczek-Khinchin mean value equa-

tion. We must therefore derive our own mean value equation.

-- 17--



Weareinterestedin themeanqueueingdelayforanarbitraryarrivingpacket.Defining_ as

thenumberof packetswhicharriveaheadof ourarbitrarypacket,and13asthenumberof timesits

transmissionisblocked(thatis, it cannot be transmitted at the current token reception because at

least co packets precede it), we may state the following theorem:

THEOREM 8.

E[Q]- E[R] +E[_] +E[_i]E[F,] (42)
g

PROOF. It is evident that an arbitrary arriving packet will experience two sources of queue-

ing delay: the time needed to serve packets left behind at the previous token departure, and the

time needed to serve packets which have arrived prior to its arrival. That is,

Q _- R+_ (43)
g

where Q is the total queueing delay, _ is the number of packet arrivals prior to the arrival of our

arbitrary arrival, and R is the number of packets left behind at token departure.

Since E [R ] is derived above, the unknown in Equation (45) is _. A well-known result from

renewal theory states that the expected value of residual life E [Wx] of the random variable X is

E [X2I (44)
E[_xl = 2E[XI

where X is the random variable whose duration is in question' Since the age ¢_xof a random vari-

able X is merely the total life of X minus its residual life, we have

_ E[¢x] =E[X]-E[_x] .. : (45)

Using Little's law, this allows us to state that the expected number of arrivals prior to the arrival

of our arbitrary arrival is

Etel = (E [¢,1+ jr, l) + -p) e[¢,l (46)

where (I),,is the age of the token hold time, and (I), is the age of the token vacation time.
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LEMMA 3.

E [_] - E [R ] (47)

PROOF. Since it is guaranteed that E [R ] < co, the mean number of packets blocked at any

token departure can be transmitted at the next token arrival. Therefore, the mean number of times

a packet is blocked is identical to the mean number of packets blocked divided by to. []

Thus by Lemma 3, the average packet will be further delayed by an amount of time equal to

E [13] token vacation times, resulting in a total mean queuing delay of

[]

E[Q] = E[R] +E[_] +E[13IE[F, ] (48)
_t

We may now find the total expected waiting time from Equation (41). The residual life of

the token vacation time can easily be found from Equation (44) and Equation (33), and the resi-

dual life of the token hold time can be derived from Equation (44) through Equation (46). The

derivation of mean queue length is implicit in the above proof.

11. Numerical Results

In this section we show the results of our analysis. This is done by comparing the results

from our simulation system to the numerical values produced by the analysis. We show that the

analysis has good agreement with the results produced by the simulation system.

The simulation system used to produce the results shown here is a discrete event, continu-

ous time token ring simulator. It assumes error-free operation. Each value on each graph is the

result of 10 completely independent experiments (more than 10 experiments is generally infeasi-

ble because of time restraints, however, 10 independent experiments generally produce statisti-

caUy valid results).
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Thebasicoperation of the simulator is as follows. All events are prequeued in a timewise

fashion using a random number generator to produce interarrival times. Each token arrival con-

stitutes an event at a station. At each token arrival, queue lengths, token cycle times and packet

delays are measured. Packets are "transmitted" by resetting pointers and updating time values.

A packet is considered to be enqueued at token arrival if its arrival time at that queue is less than

or equal to the current time as seen by the token. From these measurements, it is a simple matter

to calculate mean values.

The protocol used in our simulations is identical to the IEEE 802.5 token ring protocol [4]

running at 16 Mbps, with the exception that a packet counter was substituted for the token hold

timer. That is, instead of a station being allowed to hold the token for a certain length of time, it

is allowed to hold the token for a certain maximum number of packet transmissions. Whenever

this number has been reached or the transmit queue becomes empty, the token departs.

The results shown are taken from equilibrium operation of the simulator (s¢¢ [7] for the

methods used to determine when the simulation has achieved equilibrium). The results from the

mathematical analysis are within 95% confidence intervals (see [7]), except for the token depar-

ture queue length measurements for both Figures 1 and 2 at the highest loads measured. Token

arrival queue lengths are all within 95% confidence intervals.

Figure 2 shows the token arrival and token departure queue lengths as produced both by the

simulation and the mathematical analysis. Fibre 3 shows identical graphs for a different

configuration. Note in both cases the behavior of the predictive model: the residual packets are

slightly overestimated at low loads, and slightly underestimated at high loads. Figure 4 shows

mean waiting time (queueing delay plus the time spent waiting for the token to arrive).
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FIO. 4. Mean queueing delay vs. offered load for 10 stations,

128 byte packets, and o) = 2.

The network configuration for all the simulations (with the exception of the number of sta-

tions and packet lengdas ) are identical, we assumed an internal station latency of 6 bit times, a

uniform distance between each station of 3.0 meters, and a signal propagation delay of 5.085

nanoseconds per meter. In all cases we assumed Poisson arrivals and constant packet lengths.

Packet lengths include all framing.
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12.Conclusions

In this paper we have derived mathematical models describing the behavior of an exhaus-

tive limited service discipline for token ring networks. The models we have derived are the

transforms of the distribution of the number of packets present at token departure and token

arrival instants. Our models also predict queue lengths at both token arrival and token departure.

We have compared the mathematical results to simulation results, and agreement between the

two is close. We have also shown how to find any state probability desired for both token arrival

and token departure instants.

The complexity of our model is of order co!, where co is the maximum number of packets

per token allowed to be transmitted at token reception. The model requires the solution of co

independent linear equations. The complexity of our model, however, is small when compared to

the time and memory needed to run a computer simulation of an identical configuration.

The importance of our model is that this service discipline closely approximates protocols

which use a token hold timer to limit the token visitation time at a station. Also included in our

model is an implicit solution to single packet per token, or ordinary cyclic service -- this solution

results when to is set to 1.
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